Static Calculation Cw

Permasteelisa – Gartner Middle East L.L.C TABLE OF CONTENTS 1 MATERIAL PROPERTIES .........................................................................................................5 1.1 Structural Aluminium Alloys........................................................................................................... 5 1.1.1 CW Frame Elements : Alloy 6063 T6 (extrusion) – ADM 2005............................................... 5 1.1.2 Bracket Elements : Alloy 6061 T6 (extrusion) – ADM 2005 .................................................... 5 1.2 Structural Steel S275..................................................................................................................... 5 1.3 Fasteners....................................................................................................................................... 5 1.3.1 Stainless Steel Bolts (ASTM F 738M Grade A2-70, M6-M20) ................................................ 5 2 GENERAL DESCRIPTION.........................................................................................................6 3 LOADS........................................................................................................................................9 3.1 Dead Load ..................................................................................................................................... 9 3.2 Barrier Loads ............................................................................................................................... 13 3.3 Wind Loads.................................................................................................................................. 13 3.4 Cable Forces due to Wind & Pretension Loads, PCF ................................................................... 13 4 GLASS......................................................................................................................................14 4.1 General Description and Dimensions.......................................................................................... 14 4.2 Allowable Stresses for Glass Analyses ....................................................................................... 14 4.3 Glass Verification for Wind Load ................................................................................................. 15 4.3.1 Analysis Results – WLsuction (3-sec) ....................................................................................... 15 4.3.2 Analysis Results – WLpressure (3-sec) ..................................................................................... 18 4.3.3 Analysis Results – Dead Load (beyond 1 year) .................................................................... 19 4.4 4.4.1 5 Glass Verification for Barrier Loads............................................................................................. 21 Analysis Results .................................................................................................................... 21 STRUCTURAL SEALANT .......................................................................................................25 5.1 5.1.1 6 General Description..................................................................................................................... 25 Structural Check .................................................................................................................... 25 MULLIONS ...............................................................................................................................26 6.1 Male and Female Mullions (inclined / vertical facades)............................................................... 26 6.1.1 Section Properties ................................................................................................................. 26 6.1.2 Analysis Results .................................................................................................................... 27 6.1.3 Structural Check .................................................................................................................... 30 7 TRANSOMS .............................................................................................................................36 7.1 Top and Bottom Transoms .......................................................................................................... 36 GAR-C-R-J-A-GN-0101-01 3 Permasteelisa – Gartner Middle East L.L.C 7.1.1 Section Properties ................................................................................................................. 36 7.1.2 Structural Check .................................................................................................................... 38 8 BRACKET DESIGN..................................................................................................................40 8.1 General Description..................................................................................................................... 40 8.2 Bracket Forces ............................................................................................................................ 40 8.3 Main Hook Bracket ...................................................................................................................... 41 8.3.1 Finite Element Model ............................................................................................................. 41 8.3.2 Analysis Results .................................................................................................................... 42 8.4 Secondary Hook Bracket............................................................................................................. 44 8.4.1 Finite Element Model ............................................................................................................. 44 8.4.2 Analysis Results .................................................................................................................... 45 8.5 Slide Bracket ............................................................................................................................... 46 8.5.1 Finite Element Model ............................................................................................................. 46 8.5.2 Analysis Results .................................................................................................................... 47 8.5.3 Slide Bracket Bolt Connection to Mullion............................................................................... 48 9 ANCHORAGE DESIGN ...........................................................................................................50 9.1 Channel Forces ........................................................................................................................... 50 REFERENCES .............................................................................................................................................58 APPENDIX A - ALLOWABLE STRESSES FOR 6063-T6..........................................................................59 APPENDIX B – ALLOWABLE STRESS & FACTOR OF SAFETY............................................................61 FOR ALUMINIUM ALLOY 6061-T6.............................................................................................................61 APPENDIX C – FACTOR OF SAFETY FOR METAL FASTNERS ............................................................65 APPENDIX D – ENGINEERING VALUES for PVB ....................................................................................66 GAR-C-R-J-A-GN-0101-01 4 Permasteelisa – Gartner Middle East L.L.C 1 MATERIAL PROPERTIES 1.1 Structural Aluminium Alloys 1.1.1 CW Frame Elements : Alloy 6063 T6 (extrusion) – ADM 2005 Minimum Mechanical Properties: Table 3.3-1M Ftu = 205 MPa tensile ultimate strength Fty = 170 MPa tensile yield strength Fcy = 170 MPa compressive yield strength Fsu = 130 MPa shear ultimate strength Fty,ALLO = min (Fty/1.65,Ftu/1.95) = 103.03 MPa allowable tensile strength Fcy,ALLO = Fcy/1.65 allowable compressive strength = 103.03 MPa 1.1.2 Bracket Elements : Alloy 6061 T6 (extrusion) – ADM 2005 Minimum Mechanical Properties: Table 3.3-1M 1.2 Ftu = 260 MPa tensile ultimate strength Fty = 240 MPa tensile yield strength Fcy = 240 MPa shear ultimate strength Fsu = 165 MPa compressive yield strength Fty,ALLO = min (Fty/1.65,Ftu/1.95) = 133.3 MPa allowable tensile strength Fcy,ALLO = Fcy/1.65 allowable compressive strength = 145.45 MPa Structural Steel S275 E = 200000 MPa modulus of elasticity Ftu = 380 MPa tensile ultimate strength Fty = 275 MPa tensile yield strength 1.3 Fasteners 1.3.1 Stainless Steel Bolts (ASTM F 738M Grade A2-70, M6-M20) Rtu = 700 MPa tensile strength Rty = 450 MPa yield strength GAR-C-R-J-A-GN-0101-01 5 Permasteelisa – Gartner Middle East L.L.C 2 GENERAL DESCRIPTION The report must be read in conjunction with Gartner’s relevant drawings. Façade under study is a top-hanging unitised male-female curtain wall system. Aluminium extrusions act as panel frame elements and are supported by high-strength aluminum alloy brackets. These brackets, which allow vertical and horizontal tolerance adjustments, are fixed back to the supporting structure (concrete, steel elements). Typical module widths are 1500 mm and 1433 mm for inclined and vertical facades, respectively. As per Permasteelisa Gartner Middle East L.L.C.’s scope of work, this report covers facade spanning from G.L. 2.7 to 18.7 (for inclined), and S.5 to V (for vertical). Kindly refer to revision 01 of drawing number GAR-C-D-J-A-GN-2080. Three facade sections have been considered in the report. For calculation purposes, three sections are named as ZONE 01 (G.L. 2.7 to 4.3), ZONE 02 (G.L. 17.7 to 18.7), and ZONE 03 (G.L. 14 to 17.7). Kindly refer to figures below. Figure 1: GAR-C-R-J-A-GN-0101-01 Inclined Facade – ZONE 01 (G.L. 2.7 to 4.3) 6 Permasteelisa – Gartner Middle East L.L.C Figure 2: GAR-C-R-J-A-GN-0101-01 Inclined Facade – ZONE 02 (G.L. 17.7 to 18.7) 7 Permasteelisa – Gartner Middle East L.L.C Figure 3: GAR-C-R-J-A-GN-0101-01 Inclined Facade – ZONE 03 (G.L. 14 to 17.7) 8 Permasteelisa – Gartner Middle East L.L.C 3 LOADS 3.1 Dead Load GAR-C-R-J-A-GN-0101-01 9 Permasteelisa – Gartner Middle East L.L.C GAR-C-R-J-A-GN-0101-01 10 Permasteelisa – Gartner Middle East L.L.C GAR-C-R-J-A-GN-0101-01 11 Permasteelisa – Gartner Middle East L.L.C GAR-C-R-J-A-GN-0101-01 12 Permasteelisa – Gartner Middle East L.L.C 3.2 Barrier Loads The infill has been verified under barrier loads as per ASCE 7-05: Section 4.4. The following load cases have been considered: FIL1 = 0.22 kN point load anywhere up to 1.1 m above FFL applied to the infill on a surface area not to exceed 305 mm square; FIL2 = 0.73 kN/m distributed line load at 1.1 m above FFL It should be noted that the above loads have been considered not to act simultaneously with the maximum wind load. 3.3 Wind Loads The following design wind loads has been derived from RWDI Cladding Wind Load Study for Doha Convention Centre. As per Permasteelisa Gartner Middle East L.L.C.’s scope of work, the maximum recommended wind loads for cladding design are: Profiles/CW Bracket design wind load pw = +1.0/-1.0 kPa Glass/Sealant design wind load pw = +1.0/-1.0 kPa 3.4 Cable Forces due to Wind & Pretension Loads, PCF The following forces have been considered in the analyses. These forces are acting on the cantilevered brackets (cable brackets) where cable supports are running through them. Cable brackets are fastened to the support frames (mullions), which consequently bear high stresses due to load transfer from these brackets. (Refer to cable analysis) Load 1: Dead Load + Pretension F1 = 10 kN, Load 2: Wind Load (pressure) F1 = 22 kN, Load 3: F2 = 4 kN Wind Load (suction) F1 = 3 kN, GAR-C-R-J-A-GN-0101-01 F2 = 9 kN F2 = 17 kN 13 Permasteelisa – Gartner Middle East L.L.C 4 GLASS ASTM E 1300 – latest edition: Standard Practice for Determining Load Resistance of Glass in Buildings has been used to verify the structural adequacy of glass. 4.1 General Description and Dimensions The standard configuration of glazing system is reported below: External pane 10 mm heat strengthened Air cavity 16 mm Internal pane 4+4 mm heat strengthened, laminated The maximum glass dimensions are 1500 x 4946 mm. 4.2 Allowable Stresses for Glass Analyses The allowable surface and edge stresses for each load case have been obtained in accordance to ASTM E 1300 – 09a multiplied by a load duration factor (LDF) in Table X6.1. HS,SURFACE = 46.6 MPa Section X8.2 HS HS,EDGE Table X9.1 HS = 36.5 MPa LDF3s LDF60s LDF>1yr Figure 4: Load Duration Factors HS,3s = LDF3s* HS,SURFACE = 46.6 MPa Allow. surface stress for HS 3-sec load HS,60s = LDF60s* HS,SURFACE = 38.7 MPa Allow. surface stress for HS 60-sec load HS,>1yr = LDF>1yr* HS,SURFACE = 14.5 MPa Allow. surface stress beyond 1 year HSe,3s = LDF3s* HS,EDGE = 36.5 MPa Allow. edge stress for HS 3-sec load HSe,60s = LDF60s* HS,EDGE = 30.3 MPa Allow. edge stress for HS 60-sec load HSe,>1yr = LDF>1yr* HS,EDGE = 11.3 MPa Allow. edge stress beyond 1 year GAR-C-R-J-A-GN-0101-01 14 Permasteelisa – Gartner Middle East L.L.C 4.3 Glass Verification for Wind Load For structural verification against wind load, glass plates have been modelled using finite element software (SJ Mepla), and a non-linear approach was employed. 4.3.1 Analysis Results – WLsuction (3-sec) GAR-C-R-J-A-GN-0101-01 15 Permasteelisa – Gartner Middle East L.L.C GAR-C-R-J-A-GN-0101-01 16 Permasteelisa – Gartner Middle East L.L.C sHS,max Figure 5: Maximum Plate Stresses (left) & Deflections (right): Case (DL+WLsuction) Check stresses sHS,max < sHS,3s = 46.6 MPa GAR-C-R-J-A-GN-0101-01 Æ Adequate 17 Permasteelisa – Gartner Middle East L.L.C 4.3.2 Analysis Results – WLpressure (3-sec) sHS,max Figure 6: Maximum Plate Stresses (left) & Deflections (right): Case (DL+WLpressure) Check stresses sHS,max < sHS,3s = 46.6 MPa GAR-C-R-J-A-GN-0101-01 Æ Adequate 18 Permasteelisa – Gartner Middle East L.L.C 4.3.3 Analysis Results – Dead Load (beyond 1 year) GAR-C-R-J-A-GN-0101-01 19 Permasteelisa – Gartner Middle East L.L.C sHS,max Figure 7: Maximum Plate Stresses (left) & Deflections (right): Case (DL+WLpressure) Check stresses sHS,max < sHSe,>1yr = 46.6 MPa GAR-C-R-J-A-GN-0101-01 Æ Adequate 20 Permasteelisa – Gartner Middle East L.L.C 4.4 Glass Verification for Barrier Loads For structural verification against barrier loads, glass plates have been modelled using finite element software (SJ Mepla), and a non-linear approach was employed. 4.4.1 Analysis Results GAR-C-R-J-A-GN-0101-01 21 Permasteelisa – Gartner Middle East L.L.C GAR-C-R-J-A-GN-0101-01 22 Permasteelisa – Gartner Middle East L.L.C GAR-C-R-J-A-GN-0101-01 23 Permasteelisa – Gartner Middle East L.L.C Figure 8: Maximum Plate Stresses (left) & Deflections (right): Load Case Combination (DL+FIL1) Figure 9: Maximum Plate Stresses (left) & Deflections (right): Load Case Combination (DL+FIL2) Check stresses sHS,max < sHS,60s= 38.68 MPa GAR-C-R-J-A-GN-0101-01 Æ Adequate 24 Permasteelisa – Gartner Middle East L.L.C 5 STRUCTURAL SEALANT 5.1 General Description Sealant Type: GE Ultra Glaze SSG 4400 or equivalent Sealant Properties: Allowed design stress in tension Vallowed for short term loads 0.14 MPa Modulus of elasticity in tension or compression E 1.50 MPa Figure 10: Typical Sections 5.1.1 Structural Check Primary sealant, VB: (as per ASTM C 1401) VB= pw * a * 0.5 / hmc = 0.083 MPa < 0.14 MPa Æ Adequate Secondary sealant, VC: VC= pw * 1 * a * 0.5 / h’mc = 0.050 MPa < 0.138 MPa where: a = 1.500 m = smaller panel side hmc = 9 mm h’mc = 10 mm = silicone bite (secondary) 1.0 kPa = design wind load (t13 = 0.661 pw = 1 = t13 / + t23) t1 = 10 mm t2 = 4+4 = 8 mm GAR-C-R-J-A-GN-0101-01 Æ Adequate = silicone bite (primary) (Section 3.3) 25 Permasteelisa – Gartner Middle East L.L.C 6 MULLIONS 6.1 Male and Female Mullions (inclined / vertical facades) Inclined and vertical facades share similar system design. However, the inclined facade is considered to be critical since the maximum panel dimensions are larger than that of the vertical facade. Also, forces or loads on the inclined facade are much higher and cause more critical effects on the panel’s structural elements such as frames, brackets, etc. Conservatively, the following analyses will only consider inclined facade to check the overall structural adequacy of both vertical and inclined facades. 6.1.1 Section Properties Material: Aluminium Alloy 6063 T6 ITOT = 4.903e6 mm4 Figure 11: GAR-C-R-J-A-GN-0101-01 Male [right] / Female [left] Mullions 26 Permasteelisa – Gartner Middle East L.L.C Figure 12: Note: Mullion Stiffener (MS Plate S275) Mullion stiffeners are only used in mullion profiles that support cable brackets. 6.1.2 Analysis Results Figure 13: Figure 14: GAR-C-R-J-A-GN-0101-01 Load Cases: PCF, DL, WLsuction, WLpressure 27 Permasteelisa – Gartner Middle East L.L.C ZONE 02 ZONE 01 ZONE 03 Figure 15: Max. Bending Moments for Unreinforced Mullions: Worst Case - (DL+PCF+WLpressure) ZONE 02 ZONE 01 ZONE 03 Figure 16: Max. Bending Moments for Reinforced Mullions: Worst Case - (DL+PCF+WLpressure) GAR-C-R-J-A-GN-0101-01 28 Permasteelisa – Gartner Middle East L.L.C ZONE 02 ZONE 01 ZONE 03 Figure 17: Max. Deflections for Unreinforced Mullions: Worst Case - (DL+PCF+WLpressure) ZONE 02 ZONE 01 ZONE 03 Figure 18: Max. Deflections for Reinforced Mullions: Worst Case - (DL+PCF+WLpressure) GAR-C-R-J-A-GN-0101-01 29 Permasteelisa – Gartner Middle East L.L.C The maximum bending moment for the worst load combination for unreinforced mullions is: M = 5.93 kN-m (Refer to Figure 15) The moment is divided between the mullions by stiffness. Bending moment carried by the female mullion: (Ixx,f / Ixx,tot) x M = 2.36 kN-m Bending moment carried by the male mullion: (Ixx,m / Ixx,tot) x M = 3.57 kN-m Calculated deflections: L = 4029 mm max = 11.79 – (0+2.54)/2 = 13.1 mm lim = min.(L/200,20) = 20 mm Æ Adequate max < lim 6.1.3 Structural Check Figure 19: GAR-C-R-J-A-GN-0101-01 Mullion Profiles: Female (left), Male (right) 30 Permasteelisa – Gartner Middle East L.L.C Female Mullion Section check - tension in beams Section check - compression in components of beams GAR-C-R-J-A-GN-0101-01 31 Permasteelisa – Gartner Middle East L.L.C GAR-C-R-J-A-GN-0101-01 32 Permasteelisa – Gartner Middle East L.L.C Male Mullion Section check - tension in beams Section check - compression in components of beams GAR-C-R-J-A-GN-0101-01 33 Permasteelisa – Gartner Middle East L.L.C The maximum bending moment for the worst load combination for reinforced mullions is: M = 14.01 kN-m (Refer to Figure 16) The moment is divided between the mullions by stiffness. Ixx,f = 1.955e6 mm4 Ixx,m = 2.948e6 mm4 Ixx,steel = 3.600e6 x [Esteel/Ealum] = 10.345e6 mm4 (aluminum equivalent) 4 Ixx,TOTAL = 15.248e6 mm Bending moment carried by the female mullion: MF = (Ixx,f / Ixx,TOTAL) x M = 1.796 kN-m Bending moment carried by the male mullion: MM = (Ixx,m / Ixx,TOTAL) x M = 2.709 kN-m Bending moment carried by the steel stiffener: Msteel = (Ixx,steel / Ixx,TOTAL) x M = 9.505 kN-m GAR-C-R-J-A-GN-0101-01 34 Permasteelisa – Gartner Middle East L.L.C Shared bending moments carried by the male and female mullions are lower compared to that at Section 6.1.2; therefore, no further structural check is necessary. Check bending stress capacity of stiffener (MS plate, S275) MR,steel = [Fty/nu]*Sxx,steel = 14.82 kN-m bending stress capacity where: Fty = 275 MPa tensile yield strength nu = 1.67 safety factor 2 Sxx,steel = 25*120 /4 = 90000 mm MR,steel > Msteel GAR-C-R-J-A-GN-0101-01 3 plastic modulus Æ Adequate 35 Permasteelisa – Gartner Middle East L.L.C 7 TRANSOMS 7.1 Top and Bottom Transoms 7.1.1 Section Properties Material: Aluminium Alloy 6063 T6 Figure 20: Figure 21: GAR-C-R-J-A-GN-0101-01 Bottom Transom Top Transom 36 Permasteelisa – Gartner Middle East L.L.C ZONE 02 ZONE 01 ZONE 03 Figure 22: Top Transom Bending Moments & Deflections (Strong Axis): Worst Case - (DL+PCF+WLpressure) ZONE 02 ZONE 01 ZONE 03 Figure 23: Bott. Transom Bending Moments & Deflections (Strong Axis): Critical Case - (DL+PCF+WLpressure) GAR-C-R-J-A-GN-0101-01 37 Permasteelisa – Gartner Middle East L.L.C 7.1.2 Structural Check Bottom Transom For Strong axis bending Section check - tension in beams For Weak axis bending P = 2500*0.018*1.476*4.414*9.81*(cos 20.6o)/2*1000 1.35 kN GAR-C-R-J-A-GN-0101-01 38 Permasteelisa – Gartner Middle East L.L.C Maximum Deflection parallel to wall: max = 1.8 mm 75% = 75% (B) = 7.5 mm where: B = 10 mm net = B - max = 8.2 mm > 75% Æ Adequate Maximum Bending Moment (weak axis): M = 0.22 kN-mm Section check - tension in beams Check For Combined Bending fby/Fby + fbx/Fbx < 1.0 Æ Adequate Top Transom For Strong axis bending Section check - tension in beams GAR-C-R-J-A-GN-0101-01 39 Permasteelisa – Gartner Middle East L.L.C 8 BRACKET DESIGN 8.1 General Description The curtain wall bracket configuration, as shown below, is composed of high strength extruded aluminium profiles which allow horizontal and vertical tolerance adjustments. The whole bracket assembly utilizes three types of aluminium profiles, and anchor channels which are fixed to reinforced concrete structures such as beams, columns and slabs. At areas where there are no concrete structures to install these anchor channels, panel brackets are fixed to fabricated steel elements and horizontal steel members. 8.2 Bracket Forces ZONE 02 ZONE 01 ZONE 03 Figure 24: GAR-C-R-J-A-GN-0101-01 Support Reactions: Load Case - (DL+PCF+WLsuction) 40 Permasteelisa – Gartner Middle East L.L.C ZONE 02 ZONE 01 ZONE 03 Figure 25: Support Reactions: Load Case - (DL+PCF+WLpressure) 8.3 Main Hook Bracket Material: Aluminium Alloy 6061 T6 Bracket length = 250 mm The bracket has been analysed using a F.E. model to determine the extent of any stress concentrations. Due to symmetry, only half of the bracket has been modelled by means of Hexa8 brick elements. Beam2 compression only beam elements have been used (with radial disposition) to simulate the contact between bolt and bracket, and also between bracket and supporting concrete structure. A non linear analysis has been carried-out. 8.3.1 Finite Element Model Critical support reactions: (Refer to Figures 24 & 25) Load Case - (DL + PCF + WLsuction) Load Case - (DL + PCF + WLpressure) RVn = 0.89/2 = 0.45 kN RVp = 3.25/2 = 1.63 kN vertical reactions RHn = 25.67/2 = 12.84 kN RHp = 24.26/2 = 12.13 kN horizontal reactions GAR-C-R-J-A-GN-0101-01 41 Permasteelisa – Gartner Middle East L.L.C FHn FVn or FVp Figure 26: FHp F.E. Model, Boundary Conditions, and Loads 8.3.2 Analysis Results Figure 27: GAR-C-R-J-A-GN-0101-01 Brick Stresses & Displacements: Load Case - (DL+PCF+WLsuction) 42 Permasteelisa – Gartner Middle East L.L.C Figure 28: Brick Stresses & Displacements: Load Case - (DL+PCF+WLpressure) Check for Stress The maximum Von Mises stress for the combination of dead load and wind load is: VVM = 116.83 MPa < Vall = 133.3 MPa Æ Adequate Check for Deflection Deflection is negligible. GAR-C-R-J-A-GN-0101-01 43 Permasteelisa – Gartner Middle East L.L.C 8.4 Secondary Hook Bracket Material: Aluminium Alloy 6061 T6 The bracket has been analysed using a F.E. model to determine the extent of any stress concentrations. It has been modelled by means of Hexa8 brick elements. Compression-only beam elements have been used to simulate the contact between secondary hook and slide brackets. A non linear analysis has been carried-out. 8.4.1 Finite Element Model Critical support reactions: (Refer to Figures 24 & 25) Load Case - (DL + PCF + WLsuction) Load Case - (DL + PCF + WLpressure) RVn = 0.89/2 = 0.45 kN RVp = 3.25/2 = 1.63 kN vertical reactions RHn = 25.67/2 = 12.84 kN RHp = 24.26/2 = 12.13 kN horizontal reactions FHn FVn or FVp Figure 29: GAR-C-R-J-A-GN-0101-01 FHp F.E. Model, Boundary Conditions, and Loads 44 Permasteelisa – Gartner Middle East L.L.C 8.4.2 Analysis Results Figure 30: Brick Stresses & Displacements: Load Case - (DL+PCF+WLsuction) Figure 31: Brick Stresses & Displacements: Load Case - (DL+PCF+WLpressure) Check for Stress VVM = 125.13 MPa < Vall = 133.3 MPa Æ Adequate Check for Deflection: Deflection is negligible. GAR-C-R-J-A-GN-0101-01 45 Permasteelisa – Gartner Middle East L.L.C 8.5 Slide Bracket Material: 6061 T6 Aluminium Alloy 8.5.1 Finite Element Model The bracket has been analysed using a F.E. model to determine the extent of any stress concentrations. It has been modelled by means of Hexa8 brick elements. Compression-only beam elements have been used to simulate the contact between secondary hook and slide brackets. A non linear analysis has been carried-out. Critical support reactions: (Refer to Figures 24 & 25) Load Case - (DL + PCF + WLsuction) Load Case - (DL + PCF + WLpressure) RVn = 0.89/2 = 0.45 kN RVp = 3.25/2 = 1.63 kN vertical reactions RHn = 25.67/2 = 12.84 kN RHp = 24.26/2 = 12.13 kN horizontal reactions FHn FVn or FVp Figure 32: GAR-C-R-J-A-GN-0101-01 FHp F.E. Model, Boundary Conditions, and Loads 46 Permasteelisa – Gartner Middle East L.L.C 8.5.2 Analysis Results Figure 33: Brick Stresses & Displacements: Load Case - (DL+PCF+WLsuction) Figure 34: Brick Stresses & Displacements: Load Case - (DL+PCF+WLpressure) Check for Stress The maximum Von Mises stress for the combination of dead load and wind load is: VVM = 66.46 MPa < Vall = 133.3 MPa Check for Deflection: Æ Adequate Deflection is negligible. GAR-C-R-J-A-GN-0101-01 47 Permasteelisa – Gartner Middle East L.L.C 8.5.3 Slide Bracket Bolt Connection to Mullion Material: Bolt type: M10 A2/70 Critical support reactions: (Refer to Figure 24) Load Case - (DL + PCF + WLsuction) RVn = 0.89/2 = 0.45 kN vertical reactions RHn = 25.67/2 = 12.84 kN horizontal reactions Shear due to eccentricities, (x2 + y2) = 0 + 2*752 = 11250 mm2 Mtot = Fhn*(10tolerance) - Fvn*72 = 96.0 kN-mm Fh1 = Mtot*75/(x2 + y2) = 0.64 kN Direct shear, Fh2 = Fh/3 = 4.28 kN Fv = Fv/3 = 0.15 kN Resultant shear, VR = [(Fh1 + Fh2)2 + Fv2]1/2 = 4.92 kN GAR-C-R-J-A-GN-0101-01 48 Permasteelisa – Gartner Middle East L.L.C GAR-C-R-J-A-GN-0101-01 49 Permasteelisa – Gartner Middle East L.L.C 9 ANCHORAGE DESIGN Anchor Channel / Bolt: HAC-50 F hef = 106 mm; HBC-C 4.6F, M12 9.1 Channel Forces Critical support reactions: Load Case - (DL+ PCF +WLsuction) (Refer to Figure 24) V = RVn = 0.89 kN N = RHn = 25.67 kN M = 25.67*205 + 0.89*80 = 5333.55 kN-mm Sb = (1732 + 232) / 173 = 176.1 mm T1 = M / Sb = 30.29 kN T2 = [d2/d1]*M = 4.03 kN GAR-C-R-J-A-GN-0101-01 50 Permasteelisa – Gartner Middle East L.L.C GAR-C-R-J-A-GN-0101-01 51 Permasteelisa – Gartner Middle East L.L.C GAR-C-R-J-A-GN-0101-01 52 Permasteelisa – Gartner Middle East L.L.C GAR-C-R-J-A-GN-0101-01 53 Permasteelisa – Gartner Middle East L.L.C GAR-C-R-J-A-GN-0101-01 54 Permasteelisa – Gartner Middle East L.L.C GAR-C-R-J-A-GN-0101-01 55 Permasteelisa – Gartner Middle East L.L.C GAR-C-R-J-A-GN-0101-01 56 Permasteelisa – Gartner Middle East L.L.C GAR-C-R-J-A-GN-0101-01 57 Permasteelisa – Gartner Middle East L.L.C REFERENCES LOADS SEI/ASCE 7-05 Minimum Design Loads for Buildings and Other Structures ALUMINIUM ALUMINIUM DESIGN MANUAL Specification guidelines for aluminium structures ASTM B209 Specification for Aluminum and Aluminum-Alloy Sheet and Plate ASTM B221 Specification for Aluminum-Alloy Extruded Bars, Shapes and Tubes AAMA TIR-A9-1991 Metal curtain wall fasteners GLASS ASTM E 1300-09a Standard Practice For Determining The Minimum Thickness And Type Of Glass Required To Resist A Specified Load AAMA- 1984 Structural Properties Of Glass SILICONE ASTM C 1401 - 02 Standard Guide for Structural Sealant Glazing ASTM C 1249 - 93 Standard Guide for Secondary Seal for Sealed Insulating Glass Units for Structural Sealant Glazing Applications STEEL ANSI/ AISC 360-05 Specification for Structural Steel Building SOFTWARE Straus 7.1/ Strand 7.1 Finite Element Analysis System, researched and developed by G+D Computing Pty.Ltd in Australia. Address: Suite1, Level7, 541 Kent Street, Sydney, 2000. Australia. Email: [email protected] Web: www.strand.aust.com. Fax: +61 2 9264 2066.. Tel: +61 2 9264 2977. Reference manual and User Guide. SJ MEPLA SJ Software GmbH Version 3.5 Address: Haarhofstr. 52, 52080 Aachen, Germany GAR-C-R-J-A-GN-0101-01 58 Permasteelisa – Gartner Middle East L.L.C APPENDIX A - ALLOWABLE STRESSES FOR 6063-T6 Aluminium Design Manual 2005 Table 2-24 ALLOWABLE STRESSES FOR BUILDING TYPE STRUCTURES 6063-T6, Extrusions and Pipe GAR-C-R-J-A-GN-0101-01 59 Permasteelisa – Gartner Middle East L.L.C GAR-C-R-J-A-GN-0101-01 60 Permasteelisa – Gartner Middle East L.L.C APPENDIX B – ALLOWABLE STRESS & FACTOR OF SAFETY FOR ALUMINIUM ALLOY 6061-T6 (AS PER ALUMINIUM DESIGN MANUAL 2005) GAR-C-R-J-A-GN-0101-01 61 Permasteelisa – Gartner Middle East L.L.C GAR-C-R-J-A-GN-0101-01 62 Permasteelisa – Gartner Middle East L.L.C GAR-C-R-J-A-GN-0101-01 63 Permasteelisa – Gartner Middle East L.L.C GAR-C-R-J-A-GN-0101-01 64 Permasteelisa – Gartner Middle East L.L.C APPENDIX C – FACTOR OF SAFETY FOR METAL FASTNERS (AS PER AAMA TIR–A9-1991) GAR-C-R-J-A-GN-0101-01 65 Permasteelisa – Gartner Middle East L.L.C APPENDIX D – ENGINEERING VALUES for PVB GAR-C-R-J-A-GN-0101-01 66
View more...
   EMBED

Share

Preview only show first 6 pages with water mark for full document please download

Transcript

Permasteelisa – Gartner Middle East L.L.

C

TABLE OF CONTENTS
1 MATERIAL PROPERTIES .........................................................................................................5

1.1 Structural Aluminium Alloys........................................................................................................... 5
1.1.1 CW Frame Elements : Alloy 6063 T6 (extrusion) – ADM 2005............................................... 5
1.1.2 Bracket Elements : Alloy 6061 T6 (extrusion) – ADM 2005 .................................................... 5

1.2 Structural Steel S275..................................................................................................................... 5

1.3 Fasteners....................................................................................................................................... 5
1.3.1 Stainless Steel Bolts (ASTM F 738M Grade A2-70, M6-M20) ................................................ 5

2 GENERAL DESCRIPTION.........................................................................................................6

3 LOADS........................................................................................................................................9

3.1 Dead Load ..................................................................................................................................... 9

3.2 Barrier Loads ............................................................................................................................... 13

3.3 Wind Loads.................................................................................................................................. 13

3.4 Cable Forces due to Wind & Pretension Loads, PCF ................................................................... 13

4 GLASS......................................................................................................................................14

4.1 General Description and Dimensions.......................................................................................... 14

4.2 Allowable Stresses for Glass Analyses ....................................................................................... 14

4.3 Glass Verification for Wind Load ................................................................................................. 15
4.3.1 Analysis Results – WLsuction (3-sec) ....................................................................................... 15
4.3.2 Analysis Results – WLpressure (3-sec) ..................................................................................... 18
4.3.3 Analysis Results – Dead Load (beyond 1 year) .................................................................... 19

4.4 Glass Verification for Barrier Loads............................................................................................. 21
4.4.1 Analysis Results .................................................................................................................... 21

5 STRUCTURAL SEALANT .......................................................................................................25

5.1 General Description..................................................................................................................... 25
5.1.1 Structural Check .................................................................................................................... 25

6 MULLIONS ...............................................................................................................................26

6.1 Male and Female Mullions (inclined / vertical facades)............................................................... 26
6.1.1 Section Properties ................................................................................................................. 26
6.1.2 Analysis Results .................................................................................................................... 27
6.1.3 Structural Check .................................................................................................................... 30

7 TRANSOMS .............................................................................................................................36

7.1 Top and Bottom Transoms .......................................................................................................... 36
GAR-C-R-J-A-GN-0101-01 3
Permasteelisa – Gartner Middle East L.L.C

7.1.1 Section Properties ................................................................................................................. 36
7.1.2 Structural Check .................................................................................................................... 38

8 BRACKET DESIGN..................................................................................................................40

8.1 General Description..................................................................................................................... 40

8.2 Bracket Forces ............................................................................................................................ 40

8.3 Main Hook Bracket ...................................................................................................................... 41
8.3.1 Finite Element Model ............................................................................................................. 41
8.3.2 Analysis Results .................................................................................................................... 42

8.4 Secondary Hook Bracket............................................................................................................. 44
8.4.1 Finite Element Model ............................................................................................................. 44
8.4.2 Analysis Results .................................................................................................................... 45

8.5 Slide Bracket ............................................................................................................................... 46
8.5.1 Finite Element Model ............................................................................................................. 46
8.5.2 Analysis Results .................................................................................................................... 47
8.5.3 Slide Bracket Bolt Connection to Mullion............................................................................... 48

9 ANCHORAGE DESIGN ...........................................................................................................50

9.1 Channel Forces ........................................................................................................................... 50

REFERENCES .............................................................................................................................................58

APPENDIX A - ALLOWABLE STRESSES FOR 6063-T6..........................................................................59

APPENDIX B – ALLOWABLE STRESS & FACTOR OF SAFETY............................................................61

FOR ALUMINIUM ALLOY 6061-T6.............................................................................................................61

APPENDIX C – FACTOR OF SAFETY FOR METAL FASTNERS ............................................................65

APPENDIX D – ENGINEERING VALUES for PVB ....................................................................................66

GAR-C-R-J-A-GN-0101-01 4
Permasteelisa – Gartner Middle East L.L.C

1 MATERIAL PROPERTIES

1.1 Structural Aluminium Alloys

1.1.1 CW Frame Elements : Alloy 6063 T6 (extrusion) – ADM 2005
Minimum Mechanical Properties: Table 3.3-1M
Ftu = 205 MPa tensile ultimate strength
Fty = 170 MPa tensile yield strength
Fcy = 170 MPa compressive yield strength
Fsu = 130 MPa shear ultimate strength
Fty,ALLO = min (Fty/1.65,Ftu/1.95) = 103.03 MPa allowable tensile strength
Fcy,ALLO = Fcy/1.65 = 103.03 MPa allowable compressive strength

1.1.2 Bracket Elements : Alloy 6061 T6 (extrusion) – ADM 2005
Minimum Mechanical Properties: Table 3.3-1M
Ftu = 260 MPa tensile ultimate strength
Fty = 240 MPa tensile yield strength
Fcy = 240 MPa shear ultimate strength
Fsu = 165 MPa compressive yield strength
Fty,ALLO = min (Fty/1.65,Ftu/1.95) = 133.3 MPa allowable tensile strength
Fcy,ALLO = Fcy/1.65 = 145.45 MPa allowable compressive strength

1.2 Structural Steel S275
E = 200000 MPa modulus of elasticity
Ftu = 380 MPa tensile ultimate strength
Fty = 275 MPa tensile yield strength

1.3 Fasteners

1.3.1 Stainless Steel Bolts (ASTM F 738M Grade A2-70, M6-M20)
Rtu = 700 MPa tensile strength
Rty = 450 MPa yield strength

GAR-C-R-J-A-GN-0101-01 5
Permasteelisa – Gartner Middle East L.L.C

2 GENERAL DESCRIPTION

The report must be read in conjunction with Gartner’s relevant drawings.

Façade under study is a top-hanging unitised male-female curtain wall system. Aluminium extrusions act
as panel frame elements and are supported by high-strength aluminum alloy brackets. These brackets,
which allow vertical and horizontal tolerance adjustments, are fixed back to the supporting structure
(concrete, steel elements). Typical module widths are 1500 mm and 1433 mm for inclined and vertical
facades, respectively.

As per Permasteelisa Gartner Middle East L.L.C.’s scope of work, this report covers facade spanning
from G.L. 2.7 to 18.7 (for inclined), and S.5 to V (for vertical). Kindly refer to revision 01 of drawing
number GAR-C-D-J-A-GN-2080.

Three facade sections have been considered in the report. For calculation purposes, three sections are
named as ZONE 01 (G.L. 2.7 to 4.3), ZONE 02 (G.L. 17.7 to 18.7), and ZONE 03 (G.L. 14 to 17.7). Kindly
refer to figures below.

Figure 1: Inclined Facade – ZONE 01 (G.L. 2.7 to 4.3)
GAR-C-R-J-A-GN-0101-01 6
Permasteelisa – Gartner Middle East L.L.C

Figure 2: Inclined Facade – ZONE 02 (G.L. 17.7 to 18.7)

GAR-C-R-J-A-GN-0101-01 7
Permasteelisa – Gartner Middle East L.L.C

Figure 3: Inclined Facade – ZONE 03 (G.L. 14 to 17.7)

GAR-C-R-J-A-GN-0101-01 8
Permasteelisa – Gartner Middle East L.L.C

3 LOADS

3.1 Dead Load

GAR-C-R-J-A-GN-0101-01 9
Permasteelisa – Gartner Middle East L.L.C

GAR-C-R-J-A-GN-0101-01 10
Permasteelisa – Gartner Middle East L.L.C

GAR-C-R-J-A-GN-0101-01 11
Permasteelisa – Gartner Middle East L.L.C

GAR-C-R-J-A-GN-0101-01 12
Permasteelisa – Gartner Middle East L.L.C

3.2 Barrier Loads

The infill has been verified under barrier loads as per ASCE 7-05: Section 4.4. The following load cases
have been considered:
FIL1 = 0.22 kN point load anywhere up to 1.1 m above FFL applied to the infill on
a surface area not to exceed 305 mm square;
FIL2 = 0.73 kN/m distributed line load at 1.1 m above FFL

It should be noted that the above loads have been considered not to act simultaneously with the
maximum wind load.

3.3 Wind Loads
The following design wind loads has been derived from RWDI Cladding Wind Load Study for Doha
Convention Centre. As per Permasteelisa Gartner Middle East L.L.C.’s scope of work, the maximum
recommended wind loads for cladding design are:

Profiles/CW Bracket design wind load pw = +1.0/-1.0 kPa
Glass/Sealant design wind load pw = +1.0/-1.0 kPa

3.4 Cable Forces due to Wind & Pretension Loads, PCF
The following forces have been considered in the analyses. These forces are acting on the cantilevered
brackets (cable brackets) where cable supports are running through them. Cable brackets are fastened to
the support frames (mullions), which consequently bear high stresses due to load transfer from these
brackets. (Refer to cable analysis)

Load 1: Dead Load + Pretension
F1 = 10 kN, F2 = 9 kN

Load 2: Wind Load (pressure)
F1 = 22 kN, F2 = 4 kN

Load 3: Wind Load (suction)
F1 = 3 kN, F2 = 17 kN

GAR-C-R-J-A-GN-0101-01 13
Permasteelisa – Gartner Middle East L.L.C

4 GLASS

ASTM E 1300 – latest edition: Standard Practice for Determining Load Resistance of Glass in Buildings
has been used to verify the structural adequacy of glass.

4.1 General Description and Dimensions
The standard configuration of glazing system is reported below:
External pane 10 mm heat strengthened
Air cavity 16 mm
Internal pane 4+4 mm heat strengthened, laminated

The maximum glass dimensions are 1500 x 4946 mm.

4.2 Allowable Stresses for Glass Analyses

The allowable surface and edge stresses for each load case have been obtained in accordance to ASTM
E 1300 – 09a multiplied by a load duration factor (LDF) in Table X6.1. 

HS,SURFACE = 46.6 MPa Section X8.2 HS 
HS,EDGE = 36.5 MPa Table X9.1 HS

LDF3s

LDF60s

LDF>1yr

Figure 4: Load Duration Factors 

HS,3s = LDF3s* HS,SURFACE = 46.6 MPa Allow. surface stress for HS 3-sec load 
HS,60s = LDF60s* HS,SURFACE = 38.7 MPa Allow. surface stress for HS 60-sec load 
HS,>1yr = LDF>1yr* HS,SURFACE = 14.5 MPa Allow. surface stress beyond 1 year 

HSe,3s = LDF3s* HS,EDGE = 36.5 MPa Allow. edge stress for HS 3-sec load 
HSe,60s = LDF60s* HS,EDGE = 30.3 MPa Allow. edge stress for HS 60-sec load 
HSe,>1yr = LDF>1yr* HS,EDGE = 11.3 MPa Allow. edge stress beyond 1 year
GAR-C-R-J-A-GN-0101-01 14
Permasteelisa – Gartner Middle East L.L.C

4.3 Glass Verification for Wind Load

For structural verification against wind load, glass plates have been modelled using finite element
software (SJ Mepla), and a non-linear approach was employed.

4.3.1 Analysis Results – WLsuction (3-sec)

GAR-C-R-J-A-GN-0101-01 15
Permasteelisa – Gartner Middle East L.L.C

GAR-C-R-J-A-GN-0101-01 16
Permasteelisa – Gartner Middle East L.L.C

sHS,max

Figure 5: Maximum Plate Stresses (left) & Deflections (right): Case (DL+WLsuction)

Check stresses
sHS,max < sHS,3s = 46.6 MPa Æ Adequate

GAR-C-R-J-A-GN-0101-01 17
Permasteelisa – Gartner Middle East L.L.C

4.3.2 Analysis Results – WLpressure (3-sec)

sHS,max

Figure 6: Maximum Plate Stresses (left) & Deflections (right): Case (DL+WLpressure)

Check stresses
sHS,max < sHS,3s = 46.6 MPa Æ Adequate

GAR-C-R-J-A-GN-0101-01 18
Permasteelisa – Gartner Middle East L.L.C

4.3.3 Analysis Results – Dead Load (beyond 1 year)

GAR-C-R-J-A-GN-0101-01 19
Permasteelisa – Gartner Middle East L.L.C

sHS,max

Figure 7: Maximum Plate Stresses (left) & Deflections (right): Case (DL+WLpressure)

Check stresses
sHS,max < sHSe,>1yr = 46.6 MPa Æ Adequate

GAR-C-R-J-A-GN-0101-01 20
Permasteelisa – Gartner Middle East L.L.C

4.4 Glass Verification for Barrier Loads

For structural verification against barrier loads, glass plates have been modelled using finite element
software (SJ Mepla), and a non-linear approach was employed.

4.4.1 Analysis Results

GAR-C-R-J-A-GN-0101-01 21
Permasteelisa – Gartner Middle East L.L.C

GAR-C-R-J-A-GN-0101-01 22
Permasteelisa – Gartner Middle East L.L.C

GAR-C-R-J-A-GN-0101-01 23
Permasteelisa – Gartner Middle East L.L.C

Figure 8: Maximum Plate Stresses (left) & Deflections (right): Load Case Combination (DL+FIL1)

Figure 9: Maximum Plate Stresses (left) & Deflections (right): Load Case Combination (DL+FIL2)

Check stresses
sHS,max < sHS,60s= 38.68 MPa Æ Adequate

GAR-C-R-J-A-GN-0101-01 24
Permasteelisa – Gartner Middle East L.L.C

5 STRUCTURAL SEALANT

5.1 General Description

Sealant Type: GE Ultra Glaze SSG 4400 or equivalent
Sealant Properties:

Allowed design stress in tension Vallowed for short term loads 0.14 MPa
Modulus of elasticity in tension or compression E 1.50 MPa

Figure 10: Typical Sections

5.1.1 Structural Check

Primary sealant, VB: (as per ASTM C 1401)
VB= pw * a * 0.5 / hmc = 0.083 MPa < 0.14 MPa Æ Adequate

Secondary sealant, VC:
VC= pw * 1 * a * 0.5 / h’mc = 0.050 MPa < 0.138 MPa Æ Adequate

where: a = 1.500 m = smaller panel side
hmc = 9 mm = silicone bite (primary)
h’mc = 10 mm = silicone bite (secondary)
pw = 1.0 kPa = design wind load (Section 3.3)
1 = t13 / (t13 + t23) = 0.661
t1 = 10 mm
t2 = 4+4 = 8 mm

GAR-C-R-J-A-GN-0101-01 25
Permasteelisa – Gartner Middle East L.L.C

6 MULLIONS

6.1 Male and Female Mullions (inclined / vertical facades)

Inclined and vertical facades share similar system design. However, the inclined facade is considered to
be critical since the maximum panel dimensions are larger than that of the vertical facade. Also, forces or
loads on the inclined facade are much higher and cause more critical effects on the panel’s structural
elements such as frames, brackets, etc. Conservatively, the following analyses will only consider inclined
facade to check the overall structural adequacy of both vertical and inclined facades.

6.1.1 Section Properties

Material: Aluminium Alloy 6063 T6

ITOT = 4.903e6 mm4

Figure 11: Male [right] / Female [left] Mullions
GAR-C-R-J-A-GN-0101-01 26
Permasteelisa – Gartner Middle East L.L.C

Figure 12: Mullion Stiffener (MS Plate S275)

Note: Mullion stiffeners are only used in mullion profiles that support cable brackets.

6.1.2 Analysis Results

Figure 13:
Figure 14: Load Cases: PCF, DL, WLsuction, WLpressure

GAR-C-R-J-A-GN-0101-01 27
Permasteelisa – Gartner Middle East L.L.C

ZONE 02

ZONE 01

ZONE 03

Figure 15: Max. Bending Moments for Unreinforced Mullions: Worst Case - (DL+PCF+WLpressure)

ZONE 02

ZONE 01

ZONE 03

Figure 16: Max. Bending Moments for Reinforced Mullions: Worst Case - (DL+PCF+WLpressure)

GAR-C-R-J-A-GN-0101-01 28
Permasteelisa – Gartner Middle East L.L.C

ZONE 02

ZONE 01

ZONE 03

Figure 17: Max. Deflections for Unreinforced Mullions: Worst Case - (DL+PCF+WLpressure)

ZONE 02

ZONE 01

ZONE 03

Figure 18: Max. Deflections for Reinforced Mullions: Worst Case - (DL+PCF+WLpressure)
GAR-C-R-J-A-GN-0101-01 29
Permasteelisa – Gartner Middle East L.L.C

The maximum bending moment for the worst load combination for unreinforced mullions is:
M = 5.93 kN-m (Refer to Figure 15)

The moment is divided between the mullions by stiffness.
Bending moment carried by the female mullion: (Ixx,f / Ixx,tot) x M = 2.36 kN-m
Bending moment carried by the male mullion: (Ixx,m / Ixx,tot) x M = 3.57 kN-m

Calculated deflections:
L = 4029 mm
max = 11.79 – (0+2.54)/2 = 13.1 mm
lim = min.(L/200,20) = 20 mm
max < lim Æ Adequate

6.1.3 Structural Check

Figure 19: Mullion Profiles: Female (left), Male (right)

GAR-C-R-J-A-GN-0101-01 30
Permasteelisa – Gartner Middle East L.L.C

Female Mullion
Section check - tension in beams

Section check - compression in components of beams

GAR-C-R-J-A-GN-0101-01 31
Permasteelisa – Gartner Middle East L.L.C

GAR-C-R-J-A-GN-0101-01 32
Permasteelisa – Gartner Middle East L.L.C

Male Mullion

Section check - tension in beams

Section check - compression in components of beams

GAR-C-R-J-A-GN-0101-01 33
Permasteelisa – Gartner Middle East L.L.C

The maximum bending moment for the worst load combination for reinforced mullions is:
M = 14.01 kN-m (Refer to Figure 16)

The moment is divided between the mullions by stiffness.
Ixx,f = 1.955e6 mm4
Ixx,m = 2.948e6 mm4
Ixx,steel = 3.600e6 x [Esteel/Ealum] = 10.345e6 mm4 (aluminum equivalent)
4
Ixx,TOTAL = 15.248e6 mm

Bending moment carried by the female mullion: MF = (Ixx,f / Ixx,TOTAL) x M = 1.796 kN-m
Bending moment carried by the male mullion: MM = (Ixx,m / Ixx,TOTAL) x M = 2.709 kN-m
Bending moment carried by the steel stiffener: Msteel = (Ixx,steel / Ixx,TOTAL) x M = 9.505 kN-m

GAR-C-R-J-A-GN-0101-01 34
Permasteelisa – Gartner Middle East L.L.C

Shared bending moments carried by the male and female mullions are lower compared to that at Section
6.1.2; therefore, no further structural check is necessary.

Check bending stress capacity of stiffener (MS plate, S275)
MR,steel = [Fty/nu]*Sxx,steel = 14.82 kN-m bending stress capacity
where: Fty = 275 MPa tensile yield strength
nu = 1.67 safety factor
2 3
Sxx,steel = 25*120 /4 = 90000 mm plastic modulus

MR,steel > Msteel Æ Adequate

GAR-C-R-J-A-GN-0101-01 35
Permasteelisa – Gartner Middle East L.L.C

7 TRANSOMS

7.1 Top and Bottom Transoms

7.1.1 Section Properties
Material: Aluminium Alloy 6063 T6

Figure 20: Bottom Transom

Figure 21: Top Transom

GAR-C-R-J-A-GN-0101-01 36
Permasteelisa – Gartner Middle East L.L.C

ZONE 02

ZONE 01

ZONE 03

Figure 22: Top Transom Bending Moments & Deflections (Strong Axis): Worst Case - (DL+PCF+WLpressure)

ZONE 02

ZONE 01

ZONE 03

Figure 23: Bott. Transom Bending Moments & Deflections (Strong Axis): Critical Case - (DL+PCF+WLpressure)

GAR-C-R-J-A-GN-0101-01 37
Permasteelisa – Gartner Middle East L.L.C

7.1.2 Structural Check

Bottom Transom
For Strong axis bending
Section check - tension in beams

For Weak axis bending

P = 2500*0.018*1.476*4.414*9.81*(cos 20.6o)/2*1000
1.35 kN

GAR-C-R-J-A-GN-0101-01 38
Permasteelisa – Gartner Middle East L.L.C

Maximum Deflection parallel to wall:
max = 1.8 mm
75% = 75% (B) = 7.5 mm where: B = 10 mm
net = B - max = 8.2 mm > 75% Æ Adequate

Maximum Bending Moment (weak axis):
M = 0.22 kN-mm

Section check - tension in beams

Check For Combined Bending
fby/Fby + fbx/Fbx < 1.0 Æ Adequate

Top Transom
For Strong axis bending
Section check - tension in beams

GAR-C-R-J-A-GN-0101-01 39
Permasteelisa – Gartner Middle East L.L.C

8 BRACKET DESIGN

8.1 General Description

The curtain wall bracket configuration, as shown below, is
composed of high strength extruded aluminium profiles
which allow horizontal and vertical tolerance adjustments.
The whole bracket assembly utilizes three types of
aluminium profiles, and anchor channels which are fixed
to reinforced concrete structures such as beams, columns
and slabs. At areas where there are no concrete
structures to install these anchor channels, panel brackets
are fixed to fabricated steel elements and horizontal steel
members.

8.2 Bracket Forces

ZONE 02

ZONE 01

ZONE 03

Figure 24: Support Reactions: Load Case - (DL+PCF+WLsuction)

GAR-C-R-J-A-GN-0101-01 40
Permasteelisa – Gartner Middle East L.L.C

ZONE 02

ZONE 01

ZONE 03

Figure 25: Support Reactions: Load Case - (DL+PCF+WLpressure)

8.3 Main Hook Bracket

Material: Aluminium Alloy 6061 T6
Bracket length = 250 mm

The bracket has been analysed using a F.E. model to determine the extent of any stress concentrations.
Due to symmetry, only half of the bracket has been modelled by means of Hexa8 brick elements. Beam2
compression only beam elements have been used (with radial disposition) to simulate the contact
between bolt and bracket, and also between bracket and supporting concrete structure. A non linear
analysis has been carried-out.

8.3.1 Finite Element Model

Critical support reactions: (Refer to Figures 24 & 25)
Load Case - (DL + PCF + WLsuction) Load Case - (DL + PCF + WLpressure)
RVn = 0.89/2 = 0.45 kN RVp = 3.25/2 = 1.63 kN vertical reactions
RHn = 25.67/2 = 12.84 kN RHp = 24.26/2 = 12.13 kN horizontal reactions

GAR-C-R-J-A-GN-0101-01 41
Permasteelisa – Gartner Middle East L.L.C

FVn or FVp FHn FHp

Figure 26: F.E. Model, Boundary Conditions, and Loads

8.3.2 Analysis Results

Figure 27: Brick Stresses & Displacements: Load Case - (DL+PCF+WLsuction)
GAR-C-R-J-A-GN-0101-01 42
Permasteelisa – Gartner Middle East L.L.C

Figure 28: Brick Stresses & Displacements: Load Case - (DL+PCF+WLpressure)

Check for Stress
The maximum Von Mises stress for the combination of dead load and wind load is:
VVM = 116.83 MPa < Vall = 133.3 MPa Æ Adequate

Check for Deflection
Deflection is negligible.

GAR-C-R-J-A-GN-0101-01 43
Permasteelisa – Gartner Middle East L.L.C

8.4 Secondary Hook Bracket

Material: Aluminium Alloy 6061 T6

The bracket has been analysed using a F.E. model to determine the extent of any stress concentrations. It
has been modelled by means of Hexa8 brick elements. Compression-only beam elements have been
used to simulate the contact between secondary hook and slide brackets. A non linear analysis has been
carried-out.

8.4.1 Finite Element Model

Critical support reactions: (Refer to Figures 24 & 25)
Load Case - (DL + PCF + WLsuction) Load Case - (DL + PCF + WLpressure)
RVn = 0.89/2 = 0.45 kN RVp = 3.25/2 = 1.63 kN vertical reactions
RHn = 25.67/2 = 12.84 kN RHp = 24.26/2 = 12.13 kN horizontal reactions

FVn or FVp FHn FHp

Figure 29: F.E. Model, Boundary Conditions, and Loads

GAR-C-R-J-A-GN-0101-01 44
Permasteelisa – Gartner Middle East L.L.C

8.4.2 Analysis Results

Figure 30: Brick Stresses & Displacements: Load Case - (DL+PCF+WLsuction)

Figure 31: Brick Stresses & Displacements: Load Case - (DL+PCF+WLpressure)

Check for Stress
VVM = 125.13 MPa < Vall = 133.3 MPa Æ Adequate

Check for Deflection: Deflection is negligible.
GAR-C-R-J-A-GN-0101-01 45
Permasteelisa – Gartner Middle East L.L.C

8.5 Slide Bracket

Material: 6061 T6 Aluminium Alloy

8.5.1 Finite Element Model

The bracket has been analysed using a F.E. model to determine the extent of any stress concentrations. It
has been modelled by means of Hexa8 brick elements. Compression-only beam elements have been
used to simulate the contact between secondary hook and slide brackets. A non linear analysis has been
carried-out.

Critical support reactions: (Refer to Figures 24 & 25)
Load Case - (DL + PCF + WLsuction) Load Case - (DL + PCF + WLpressure)
RVn = 0.89/2 = 0.45 kN RVp = 3.25/2 = 1.63 kN vertical reactions
RHn = 25.67/2 = 12.84 kN RHp = 24.26/2 = 12.13 kN horizontal reactions

FVn or FVp FHn FHp

Figure 32: F.E. Model, Boundary Conditions, and Loads

GAR-C-R-J-A-GN-0101-01 46
Permasteelisa – Gartner Middle East L.L.C

8.5.2 Analysis Results

Figure 33: Brick Stresses & Displacements: Load Case - (DL+PCF+WLsuction)

Figure 34: Brick Stresses & Displacements: Load Case - (DL+PCF+WLpressure)

Check for Stress
The maximum Von Mises stress for the combination of dead load and wind load is:
VVM = 66.46 MPa < Vall = 133.3 MPa Æ Adequate

Check for Deflection: Deflection is negligible.
GAR-C-R-J-A-GN-0101-01 47
Permasteelisa – Gartner Middle East L.L.C

8.5.3 Slide Bracket Bolt Connection to Mullion

Material:
Bolt type: M10 A2/70

Critical support reactions: (Refer to Figure 24)
Load Case - (DL + PCF + WLsuction)
RVn = 0.89/2 = 0.45 kN vertical reactions
RHn = 25.67/2 = 12.84 kN horizontal reactions

Shear due to eccentricities,
(x2 + y2) = 0 + 2*752 = 11250 mm2

Mtot = Fhn*(10tolerance) - Fvn*72 = 96.0 kN-mm
Fh1 = Mtot*75/(x2 + y2) = 0.64 kN

Direct shear,
Fh2 = Fh/3 = 4.28 kN
Fv = Fv/3 = 0.15 kN

Resultant shear,
VR = [(Fh1 + Fh2)2 + Fv2]1/2 = 4.92 kN

GAR-C-R-J-A-GN-0101-01 48
Permasteelisa – Gartner Middle East L.L.C

GAR-C-R-J-A-GN-0101-01 49
Permasteelisa – Gartner Middle East L.L.C

9 ANCHORAGE DESIGN

Anchor Channel / Bolt: HAC-50 F hef = 106 mm; HBC-C 4.6F, M12

9.1 Channel Forces

Critical support reactions: Load Case - (DL+ PCF +WLsuction) (Refer to Figure 24)
V = RVn = 0.89 kN
N = RHn = 25.67 kN

M = 25.67*205 + 0.89*80 = 5333.55 kN-mm
Sb = (1732 + 232) / 173 = 176.1 mm
T1 = M / Sb = 30.29 kN
T2 = [d2/d1]*M = 4.03 kN

GAR-C-R-J-A-GN-0101-01 50
Permasteelisa – Gartner Middle East L.L.C

GAR-C-R-J-A-GN-0101-01 51
Permasteelisa – Gartner Middle East L.L.C

GAR-C-R-J-A-GN-0101-01 52
Permasteelisa – Gartner Middle East L.L.C

GAR-C-R-J-A-GN-0101-01 53
Permasteelisa – Gartner Middle East L.L.C

GAR-C-R-J-A-GN-0101-01 54
Permasteelisa – Gartner Middle East L.L.C

GAR-C-R-J-A-GN-0101-01 55
Permasteelisa – Gartner Middle East L.L.C

GAR-C-R-J-A-GN-0101-01 56
Permasteelisa – Gartner Middle East L.L.C

GAR-C-R-J-A-GN-0101-01 57
Permasteelisa – Gartner Middle East L.L.C

REFERENCES

LOADS
SEI/ASCE 7-05 Minimum Design Loads for Buildings and Other Structures

ALUMINIUM
ALUMINIUM DESIGN MANUAL Specification guidelines for aluminium structures
ASTM B209 Specification for Aluminum and Aluminum-Alloy Sheet and Plate
ASTM B221 Specification for Aluminum-Alloy Extruded Bars, Shapes and Tubes
AAMA TIR-A9-1991 Metal curtain wall fasteners

GLASS
ASTM E 1300-09a Standard Practice For Determining The Minimum Thickness And Type
Of Glass Required To Resist A Specified Load
AAMA- 1984 Structural Properties Of Glass

SILICONE
ASTM C 1401 - 02 Standard Guide for Structural Sealant Glazing
ASTM C 1249 - 93 Standard Guide for Secondary Seal for Sealed Insulating Glass Units
for Structural Sealant Glazing Applications

STEEL
ANSI/ AISC 360-05 Specification for Structural Steel Building

SOFTWARE
Straus 7.1/ Strand 7.1 Finite Element Analysis System, researched and developed by
G+D Computing Pty.Ltd in Australia. Address: Suite1, Level7, 541
Kent Street, Sydney, 2000. Australia. Email: [email protected]
Web: www.strand.aust.com. Fax: +61 2 9264 2066..
Tel: +61 2 9264 2977.
Reference manual and User Guide.

SJ MEPLA SJ Software GmbH
Version 3.5
Address: Haarhofstr. 52, 52080 Aachen, Germany

GAR-C-R-J-A-GN-0101-01 58
Permasteelisa – Gartner Middle East L.L.C

APPENDIX A - ALLOWABLE STRESSES FOR 6063-T6
Aluminium Design Manual 2005
Table 2-24 ALLOWABLE STRESSES FOR BUILDING TYPE STRUCTURES 6063-T6, Extrusions and
Pipe

GAR-C-R-J-A-GN-0101-01 59
Permasteelisa – Gartner Middle East L.L.C

GAR-C-R-J-A-GN-0101-01 60
Permasteelisa – Gartner Middle East L.L.C

APPENDIX B – ALLOWABLE STRESS & FACTOR OF SAFETY

FOR ALUMINIUM ALLOY 6061-T6
(AS PER ALUMINIUM DESIGN MANUAL 2005)

GAR-C-R-J-A-GN-0101-01 61
Permasteelisa – Gartner Middle East L.L.C

GAR-C-R-J-A-GN-0101-01 62
Permasteelisa – Gartner Middle East L.L.C

GAR-C-R-J-A-GN-0101-01 63
Permasteelisa – Gartner Middle East L.L.C

GAR-C-R-J-A-GN-0101-01 64
Permasteelisa – Gartner Middle East L.L.C

APPENDIX C – FACTOR OF SAFETY FOR METAL FASTNERS
(AS PER AAMA TIR–A9-1991)

GAR-C-R-J-A-GN-0101-01 65
Permasteelisa – Gartner Middle East L.L.C

APPENDIX D – ENGINEERING VALUES for PVB

GAR-C-R-J-A-GN-0101-01 66